
Image Gallery Plugin
When the time comes to display images in a website, whether it is a family album, a
portfolio, or a series of product shots, there are a few ways to do this:

•	 You can insert each image manually using a rich-text editor to build up a
large table

•	 You can select the images one-by-one from a list of images that exists on your
server

•	 You can upload your images into a directory and have them automatically
converted into a gallery

Option one can be done by using the rich-text editor—CKeditor, which we've
already integrated into pages—but it's horribly tedious work building a gallery that
way.

Option two would take some work to achieve, as we would need to create a list of
all the images irst and then create a method to select the images, store them in a
database, and then, inally, create the gallery. Even then, selecting images one-by-one
is probably more work than an admin should need to do.

Option three is perfect—the admin simply uploads images into a folder and a gallery
is automatically created. It's even easier than that, as we will see, because we don't
even need the admin to realize a directory is in use.

In this chapter, we will create an Image Gallery plugin, allowing an admin to upload
a lot of images and have them automatically converted to either a slide-show gallery
or a tabular gallery (we'll offer the choice).

We will not need to extend the plugin architecture any further for this one, so there
will be minimal core engine editing.

www.eBookTM.Com

Image Gallery Plugin

[222]

Plugin coniguration
Create the directory /ww.plugins/image-gallery, and in it, create the plugin.php
ile:

<?php

$kfm_do_not_save_session=true;

require_once SCRIPTBASE.'j/kfm/api/api.php';

require_once SCRIPTBASE.'j/kfm/initialise.php';

$plugin=array(

 'name' => 'Image Gallery',

 'page_type' => array(

 'image-gallery' => 'image_gallery_admin_page_form'

)

),

 'description' => 'Allows a directory of images to be

 shown as a gallery.',

 'frontend' => array(

 'page_type' => array(

 'image-gallery' => 'image_gallery_frontend'

)

)

);

function image_gallery_admin_page_form($page,$vars){

 require dirname(__FILE__).'/admin/index.php';

 return $c;

}

function image_gallery_frontend($PAGEDATA){

 require dirname(__FILE__).'/frontend/show.php';

 return image_gallery_show($PAGEDATA);

}

Earlier in the book, we introduced KFM, which is an online ile manager. Instead
of writing a whole new ile management system every time we need to manage
uploads or other ile stuff, it makes sense to use what we already have.

The irst three lines of the plugin.php load up KFM in a way that can be used by the
server without needing to have a pop-up window for the client.

The irst line tells KFM not to bother recording or checking its database for session
data. This vastly speeds up interaction with it. As we are not interested in reusing the
session, it is ine to ignore it.

www.eBookTM.Com

Chapter 9

[223]

The second loads up some useful functions that are not used within KFM, but
would be useful for external systems. For example, we will use the kfm_api_
getDirectoryId() function, which translates a human-readable directory (such as
images/page-2) to an internal KFM ID.

We then initialize KFM, loading the various classes and building up its base
information.

The rest of the plugin.php is standard fare by now—we create a page type, "Image
Gallery", and its associated helper functions.

Now, log in to your admin area and enable the plugin, then go to the Pages section.

Page Admin tabs
As we did with the Forms plugin, let's create a skeleton tabs list irst before we ill
them in.

Create the directory /ww.plugins/image-gallery/admin and add the ile index.
php to it:

<?php

$c='<div class="tabs">';

// { table of contents

$c.='Images'

 .'Header'

 .'Settings';

// }

// { images

$c.='<div id="image-gallery-images">';

$c.='</div>';

// }

// { header

$c.='<div id="image-gallery-header">';

$c.=ckeditor('body',$page['body']);

$c.='</div>';

// }

// { settings

$c.='<div id="image-gallery-settings">';

$c.='</div>';

// }

$c.='</div>';

$c.='<link rel="stylesheet"

 href="/ww.plugins/image-gallery/admin/admin.css" />';

www.eBookTM.Com

Image Gallery Plugin

[224]

As before, the only tab that we've fully completed is the Header one, which is simply
a CKeditor object. This tab will appear in just about every page admin, so it makes
sense to simply copy or paste it each time.

The other two tabs will be leshed out shortly, and I won't explain the admin.css ile
(it's just style—download it from Packt's archived iles for this chapter).

When viewed, this looks totally bare:

Notice that in the Forms plugin, we placed the Header tab irst. In this one, it is the
second tab.

The reason for this is that once a form is created, it is unlikely to be changed much, so
if an admin is going to that page it is probably to adjust the header text, so we make
that immediately available.

In an image gallery, however, the most likely reason an admin visits the page is to
upload new images or delete old ones, so we make that one the irst tab.

Initial settings
Before we get to work on the upload tab, we need to add some settings so the gallery
knows how to behave.

Edit the index.php ile again and add the following code after the opening <?php;
the existing lines (beginning and end) have been highlighted:

www.eBookTM.Com

Chapter 9

[225]

<?php

// { initialise variables

$gvars=array(

 'image_gallery_directory' =>'',

 'image_gallery_x' =>3,

 'image_gallery_y' =>2,

 'image_gallery_autostart' =>0,

 'image_gallery_slidedelay' =>5000,

 'image_gallery_thumbsize' =>150,

 'image_gallery_captionlength'=>100,

 'image_gallery_type' =>'ad-gallery'

);

foreach($gvars as $n=>$v)if(isset($vars[$n]))$gvars[$n]=$vars[$n];

// }

$c='<div class="tabs">';

This reads the page variables and if any of the $gvars variables are not deined, the
page variable of that name is created and set to the defaults set here.

Default Function

image_gallery_directory The directory that contains the images.

image_gallery_x If the gallery type is a tabular one, then x is the
width in cells of that table.

image_gallery_y This is the height in rows of the images table.

image_gallery_autostart If the gallery type is a slide-show, then this
indicates where it should start sliding when the
page loads.

image_gallery_slidedelay How many milliseconds between each page slide.

image_gallery_thumbsize This is the size of the image thumbnails.

image_gallery_captionlength How many characters to show of the image's
caption before cutting it off.

image_gallery_type What type of gallery to use.

As we can save these variables directly into the page variables object, we don't need
to provide an external database table for them or even to save them into the site's
$DBVARS array (that should really only be used for data that is site-wide and not
page-speciic).

www.eBookTM.Com

Image Gallery Plugin

[226]

Uploading the Images
As we discussed earlier, the easiest way to manage images is to have them all
uploaded to a single directory.

It is not necessary for the admin to know what directory that is. Whenever I do
anything that involves uploading user-sourced iles, it is always into the KFM-
controlled iles area, so that the iles can be manipulated in more than one way.

We will upload the iles into a directory /f/image-gallery/page-n, where the 'n' is
a number corresponding to the page ID.

Let's build the Images tab. The code is medium long, so I'll describe it in a few
blocks. In total, it should replace the current images comment block in the source:

// { images

$c.='<div id="image-gallery-images">';

if(!$gvars['image_gallery_directory'] || !is_dir(

 SCRIPTBASE.'f/'.$gvars['image_gallery_directory'])){

 mkdir(SCRIPTBASE.'f/image-galleries');

 $gvars['image_gallery_directory']=

 '/image-galleries/page-'.$page['id'];

 mkdir(SCRIPTBASE.'f/'.$gvars['image_gallery_directory']);

}

Here's how it goes:

The irst thing that we do is check if the image_gallery_directory option is set and
whether the directory actually exists.

If not, the option is set to /image-galleries/page- plus the page ID and this
directory is then created.

$dir_id=kfm_api_getDirectoryId(preg_replace('/^\//','',

 $gvars['image_gallery_directory']));

$images=kfm_loadFiles($dir_id);

$images=$images['files'];

$n=count($images);

Next, we get the internal KFM ID of that directory (the ID is created if it doesn't
already exist), and then load up all iles in that directory.

$n is set to the number of iles found.

$c.='<iframe src="/ww.plugins/image-gallery/admin/'

 .'uploader.php?image_gallery_directory='

 .urlencode($gvars['image_gallery_directory'])

 .'" style="width:400px;height:50px;'

www.eBookTM.Com

Chapter 9

[227]

 .'border:0;overflow:hidden"></iframe>'

 .'<script>window.kfm={alert:function(){}};'

 .'window.kfm_vars={};function x_kfm_loadFiles(){}'

 .'function kfm_dir_openNode(){'

 .'document.location=document.location;}</script>';

Because all the tabs are contained in the page form, we can't have a sub-form to
handle image uploads. So, we create an <iframe> to handle the upload.

This <iframe> will submit its iles to KFM's upload.php ile, which will handle their
upload.

Upon a successful upload, KFM calls two functions, x_kfm_loadFiles() and kfm_
dir_openNode(). We create dummy versions of these so there are no errors, and use
the kfm_dir_openNode() call to reload the page to show the new images.

We'll create the <iframe>'s ile after we inish this tab.

if($n){

 $c.='<div id="image-gallery-wrapper">';

 for($i=0;$i<$n;$i++){

 $c.='<div><img src="/kfmget/'.$images[$i]['id']

 .',width=64,height=64" title="'

 .str_replace('\\\\n','
',$images[$i]['caption'])

 .'" />
<input type="checkbox" id="image-gallery-'

 .'dchk-'.$images[$i]['id'].'" /><a href="javascript:;"'

 .' id="image-gallery-dbtn-'.$images[$i]['id']

 .'">delete</div>';

 }

 $c.='</div>';

}

If images were found in the directory, then we display the images, shrunk down to a
maximum width of 64x64. The /kfmget/... bit will be explained shortly.

After the image is displayed, we add a check-box and delete link to delete the image.
We'll add behaviors to those shortly.

else{

 $c.='no images yet. please upload some.';

}

$c.='</div>';

// }

Finally, we handle the case where there are no images, by simply asking for them to
be uploaded.

www.eBookTM.Com

Image Gallery Plugin

[228]

Handling the uploads
In the same directory, /ww.plugins/image-gallery/admin, create the ile
uploader.php:

<?php

$dir=$_REQUEST['image_gallery_directory'];

echo '<form action="/j/kfm/upload.php" method="POST"

 enctype="multipart/form-data">

 <input type="file" name="kfm_file[]" multiple="multiple" />

 <input type="hidden" name="MAX_FILE_SIZE" value="9999999999"

 />

 <input type="hidden" name="directory_name"

 value="'.htmlspecialchars($dir).'" />

 <input type="submit" name="upload" value="Upload" />

 </form>';

This is a very simple upload form.

Note the use of multiple="multiple" in the ile input box. Modern browsers will
allow you to upload multiple iles, while older browsers will still work, but one
image at a time.

With that in place, we can now view the tab:

www.eBookTM.Com

Chapter 9

[229]

Uploading images will work, as you can verify by looking in your /f/image-
galleries/page-n directory, but will appear broken:

The reason for this is that the images are displayed using a mod_rewrite URL that
we have not yet deined.

Adding a kfmget mod_rewrite rule
Here is what we provided in the source (for example):

The long version of this is:

/j/kfm/get.php?id=13,width=64,height=64

KFM understands that you want the ile with ID 13 to be displayed and its size is
constrained to 64x64.

Edit /.htaccess and add the following highlighted line:

RewriteEngine on

RewriteRule ^kfmget/(.*)$ /j/kfm/get.php?id=$1 [L]

RewriteRule ^([^./]{3}[^.]*)$ /index.php?page=$1 [QSA,L]

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Image Gallery Plugin

[230]

We place the rule before the main page rule because that one matches everything
and mod_rewrite would not get to the kfmget rule.

The reason we use the shortcut in the irst place is that by eliminating the ? symbol,
we allow the ile to be cached. If you work a lot with images, it can be a drain on
your network (and your wits) to constantly reload images that you were only
viewing a moment ago.

Much better.

Now, let's work on the delete links.

Deleting images
In the previous screenshot, you saw that each image had a check-box and link. The
check-box must be ticked before the delete link is clicked to verify that the admin
meant to delete the image.

Add the following highlighted line to the end of the index.php ile:

$c.='</div>';

$c.='<link rel="stylesheet"

 href="/ww.plugins/image-gallery/admin/admin.css" />';

$c.='<script

 src="/ww.plugins/image-gallery/admin/js.js"></script>';

www.eBookTM.Com

Chapter 9

[231]

Then create the /ww.plugins/image-gallery/admin/js.js ile:

$('#image-gallery-wrapper a').bind('click',function(){

 var $this=$(this);

 var id=$this[0].id.replace('image-gallery-dbtn-','');

 if(!$('#image-gallery-dchk-'+id+':checked').length){

 alert('you must tick the box before deleting');

 return;

 }

 $.get('/j/kfm/rpc.php?action=delete_file&id='

 +id,function(ret){

 $this.closest('div').remove();

 });

});

First, we bind the click event to each of the delete links.

When clicked, we verify that the check-box was checked or return an alert explaining
that it needs to be checked.

Finally, we call KFM through an RPC (Remote Procedure Call) to delete the ile.

The RPC ile is not yet a part of the oficial KFM distribution but was always on the
plans for version 2, so here's the irst implementation of /j/kfm/rpc.php:

<?php

require 'initialise.php';

switch($_REQUEST['action']){

 case 'delete_file': // {

 $id=(int)$_REQUEST['id'];

 $file=kfmFile::getInstance($id);

 if($file){

 $file->delete();

 echo 'ok';

 exit;

 }

 else die('file does not exist');

 // }

}

Over time, that ile will grow to include all sorts of RPC commands.

With this in place, we have completed the Images tab.

Before we get to the Settings tab, we will create the front-end part of the plugin.

Upload some images so we've something to look at and then let's get to work.

www.eBookTM.Com

Image Gallery Plugin

[232]

Front-end gallery display
There are many ways to show lists of images on the front-end.

If you look in the "Media" section of http://plugins.jquery.com/, you will ind
many galleries and other ways of representing multiple images.

When given the choice, most people in my experience want a gallery where a list of
thumbnails is shown and clicking or hovering on one of them shows a larger version
of the image.

The plugin we will use here is ad-gallery (http://coffeescripter.com/code/
ad-gallery/) but we are writing the CMS plugin such that we can easily switch to
another jQuery plugin by changing the "type" select-box in the admin area.

Create the directory /ww.plugins/image-gallery/j/ad-gallery (create the j irst,
obviously) and then download the JS and CSS iles (in the Downloads section of
http://coffeescripter.com/code/ad-gallery/) to there.

Create the /ww.plugins/image-gallery/frontend directory, and in there, create
the ile show.php:

<?php

function image_gallery_show($PAGEDATA){

 $gvars=$PAGEDATA->vars;

 // {

 global $plugins_to_load;

 $c=$PAGEDATA->render();

 $start=isset($_REQUEST['start'])?(int)$_REQUEST['start']:0;

 if(!$start)$start=0;

 $vars=array(

 'image_gallery_directory' =>'',

 'image_gallery_x' =>3,

 'image_gallery_y' =>2,

 'image_gallery_autostart' =>0,

 'image_gallery_slidedelay' =>5000,

 'image_gallery_thumbsize' =>150,

 'image_gallery_captionlength'=>100,

 'image_gallery_type' =>'ad-gallery'

);

 foreach($gvars as $n=>$v)

 if($gvars->$n!='')$vars[$n]=$gvars->$n;

 $imagesPerPage=

 $vars['image_gallery_x']*$vars['image_gallery_y'];

 if($vars['image_gallery_directory']=='')

 $vars['image_gallery_directory']

www.eBookTM.Com

Chapter 9

[233]

 ='/image-galleries/page-'.$PAGEDATA->id;

 // }

 $dir_id=kfm_api_getDirectoryId(preg_replace('/^\//','',

 $vars['image_gallery_directory']));

 $images=kfm_loadFiles($dir_id);

 $images=$images['files'];

 $n=count($images);

 if($n){

 switch($vars['image_gallery_type']){

 case 'ad-gallery':

 require dirname(__FILE__).'/gallery-type-ad.php';

 break;

 default:

 return $c.'unknown gallery type "'

 .htmlspecialchars($vars['image_gallery_type'])

 .'"';

 }

 return $c;

 }else{

 return $c.'gallery "'.$vars['image_gallery_directory']

 .'" not found.';

 }

}

This script acts as a controller for the gallery, making sure default variables are set
before including the requested gallery type's script.

Notice the switch statement. If you want to add more jQuery gallery plugins, you
can add them here.

Let's create the ile /ww.plugins/image-gallery/frontend/gallery-type-ad.
php. We'll build it up a bit at a time:

<?php

$c.='<style type="text/css">img.ad-loader{

 width:16px !important;height:16px !important;}</style>

 <div style="visibility:hidden" class="ad-gallery">

 <div class="ad-image-wrapper"> </div>

 <div class="ad-controls"> </div>

 <div class="ad-nav"> <div class="ad-thumbs">

 <ul class="ad-thumb-list">';

for($i=0;$i<$n;$i++){

 $c.='

 <img src="/kfmget/'.$images[$i]['id'].',width='

 .$vars['image_gallery_thumbsize'].',height='

www.eBookTM.Com

Image Gallery Plugin

[234]

 .$vars['image_gallery_thumbsize'].'" title="'

 .str_replace('\\\\n','
',$images[$i]['caption'])

 .'"> ';

}

$c.=' </div> </div> </div>';

First, we display the list of thumbnails, similar to how it was done in the admin area.

The styles and element structure are the ad-gallery plugin.

$c.='<script src="/ww.plugins/image-gallery/j/ad-gallery/'

 .'jquery.ad-gallery.js"></script>'

 .'<style type="text/css">@import "/ww.plugins/image-'

 .'gallery/j/ad-gallery/jquery.ad-gallery.css";'

 .'.ad-gallery .ad-image-wrapper{ height: 400px;}'

 .'</style>';

Next, we import the ad-gallery plugin and its CSS ile.

$c.='<script>

$(function(){

 $(".ad-gallery").adGallery({

 animate_first_image:true,

 callbacks:{

 "init":function(){

 $("div.ad-gallery").css("visibility","visible");

 }

 },

 loader_image:"/i/throbber.gif",

 slideshow:{';

$slideshowvars=array();

if($vars['image_gallery_autostart']){

 $slideshowvars[]='enable:true';

 $slideshowvars[]='autostart:true';

}

$sp=(int)$vars['image_gallery_slidedelay'];

if($sp)$slideshowvars[]='speed:'.$sp;

$c.=join(',',$slideshowvars);

$c.='}

 });

});</script>';

Finally, we build up the start-up function that will be called when the page loads.

www.eBookTM.Com

Chapter 9

[235]

And you can then view the page in your browser:

This gallery should cover the most basic needs, but if you wanted to use a different
gallery type, it should be simple enough to add it to this.

We'll demonstrate this by building up a simple gallery in a grid fashion.

Settings tab
First, we need to write the Settings tab code so we can conigure it. Edit the ile /
ww.plugins/image-gallery/admin/index.php and let's replace the settings
comment block, starting with this:

// { settings

$c.='<div id="image-gallery-settings">';

$c.='<table><tr><th>Image Directory</th><td><select '

www.eBookTM.Com

Image Gallery Plugin

[236]

 .'id="image_gallery_directory" '

 .'name="page_vars[image_gallery_directory]">'

 .'<option value="/">/</option>';

foreach(image_gallery_get_subdirs(SCRIPTBASE.'f','') as $d){

 $c.='<option value="'.htmlspecialchars($d).'"';

 if($d==$gvars['image_gallery_directory'])

 $c.=' selected="selected"';

 $c.='>'.htmlspecialchars($d).'</option>';

}

$c.='</select></td>';

$c.='<td colspan="2"><a style="background:#ff0;'

 .'font-weight:bold;color:red;display:block;'

 .'text-align:center;" '

 .'href="#page_vars[image_gallery_directory]" '

 .'onclick="javascript:window.open(\'/j/kfm/?startup_folder='

 .'\'+$(\'#image_gallery_directory\').attr(\'value\')'

 .',\'kfm\',\'modal,width=800,height=600\');">Manage '

 .'Images</td></tr>';

This irst section allows iner control over where the iles are uploaded to.

After that, follow the next steps:

First, we create a select-box containing all the directories in the user uploads section
(/f), using the image_gallery_get_subdirs(), which we'll deine in a moment.

Next, we add a link that lets you open KFM straight to that directory, so you can edit
the images with more control than what was in the irst tab.

// { columns

$c.='<tr><th>Columns</th><td><input '

 .'name="page_vars[image_gallery_x]" value="'

 .(int)$gvars['image_gallery_x'].'" /></td>';

// }

// { gallery type

$c.='<th>Gallery Type</th><td><select '

 .'name="page_vars[image_gallery_type]">';

$types=array('ad-gallery','simple gallery');

foreach($types as $t){

 $c.='<option value="'.$t.'"';

 if(isset($gvars['image_gallery_type']) &&

 $gvars['image_gallery_type']==$t)

 $c.=' selected="selected"';

 $c.='>'.$t.'</option>';

}

www.eBookTM.Com

Chapter 9

[237]

$c.='</select></td></tr>';

// }

Next, we add an input box for columns (in case the type you choose is a grid-style
gallery) and a drop-down select-box to choose the gallery type.

In the $types array, you name the types just as the switch in show.php on the front-
end expects to ind them. I've named our new one "simple gallery".

// { rows

$c.='<tr><th>Rows</th><td><input '

 .'name="page_vars[image_gallery_y]" value="'

 .(int)$gvars['image_gallery_y'].'" /></td>';

// }

// { autostart the slideshow

$c.='<th>Autostart slide-show</th><td><select '

 .'name="page_vars[image_gallery_autostart]"><option '

 .'value="0">No</option><option value="1"';

if($gvars['image_gallery_autostart'])

 $c.=' selected="selected"';

$c.='>Yes</option></select></td></tr>';

// }

Next, we add an input for the rows for grid-style galleries, followed by a select-box
to choose whether slide-shows should be auto-started or not.

// { caption length

$cl=(int)@$gvars['image_gallery_captionlength'];

$cl=$cl?$cl:100;

$c.='<tr><th>Caption Length</th><td><input '

 .'name="page_vars[image_gallery_captionlength]" value="'

 .$cl.'" /></td>';

// }

// { slide delay

$sd=(int)@$gvars['image_gallery_slidedelay'];

$c.='<th>Slide Delay</th><td><input name="'

 .'page_vars[image_gallery_slidedelay]" class="small" '

 .'value="'.$sd.'" />ms</td></tr>';

// }

www.eBookTM.Com

Image Gallery Plugin

[238]

Next, we ask for the caption length. We set its default to 100 and if we are using a
slide-show, we ask for the slide-show delay (default value is set to 5000 ms).

You can set an image's caption by either editing its embedded data before uploading
it, or by using KFM to edit the caption after it's uploaded (right-click on the image |
edit | change caption).

// { thumb size

$ts=(int)@$gvars['image_gallery_thumbsize'];

$ts=$ts?$ts:150;

$c.='<tr><th>Thumb Size</th><td><input name="'

 .'page_vars[image_gallery_thumbsize]" value="'.$ts

 .'" /></td></tr>';

// }

$c.='</table>';

$c.='</div>';

// }

Finally, we ask for the thumb-size, and then close up the tab.

Okay, before we can view the tab, we need to create that missing function. Add this
at the top of the ile (after the <?php):

function image_gallery_get_subdirs($base,$dir){

 $arr=array();

 $D=new DirectoryIterator($base.$dir);

 $ds=array();

 foreach($D as $dname){

 $d=$dname.'';

 if($d{0}=='.')continue;

 if(!is_dir($base.$dir.'/'.$d))continue;

 $ds[]=$d;

 }

 asort($ds);

 foreach($ds as $d){

 $arr[]=$dir.'/'.$d;

 $arr=array_merge($arr,image_gallery_get_subdirs(

 $base,$dir.'/'.$d));

 }

 return $arr;

}

This function recursively builds up a list of the directories contained in the user
uploads section and returns it.

www.eBookTM.Com

Chapter 9

[239]

Finally, we can view the tab:

That's the admin area completed.

Now, we can get back to the front and inish our grid-based gallery.

Grid-based gallery
We've already added the ad-gallery. Now let's create our grid-based gallery that will
be called simple gallery.

Edit /ww.plugins/image-gallery/frontend/show.php and add the following
highlighted lines to the switch:

 break;

 case 'simple gallery':

 require dirname(__FILE__).'/gallery-type-simple.php';

 break;

 default:

www.eBookTM.Com

Image Gallery Plugin

[240]

After that, create /ww.plugins/image-gallery/frontend/gallery-type-simple.
php, again explained in parts, as follows:

<?php

$c.='<table id="image_gallery" class="image_gallery">';

if($n>$imagesPerPage){

 $prespage=$PAGEDATA->getRelativeURL();

 // { prev

 $c.='<th class="prev" style="text-align:left" '

 .'id="image_gallery_prev_wrapper">';

 if($start>0){

 $l=$start-$imagesPerPage;

 if($l<0)$l=0;

 $c.='<-- '

 .'prev';

 }

 $c.='</th>';

 // }

 for($l=1;$l<$vars['image_gallery_x']-1;++$l)$c.='<th></th>';

 // { next

 $c.='<th class="next" style="text-align:right" '

 .'id="image_gallery_next_wrapper">';

 if($start+$imagesPerPage<$n){

 $l=$start+$imagesPerPage;

 $c.='next '

 .'-->';

 }

 $c.='</th>';

 // }

}

This irst section sets up pagination. If we have columns and rows set to 3 and 2, then
there are six images per page.

If there are more than six images in the set, we need to provide navigation to those
images.

This block igures out what page we're on and whether there is more to come.

$all=array();

$s=$start+$vars['image_gallery_x']*$vars['image_gallery_y'];

if($s>$n)$s=$n;

for($i=$start;$i<$s;++$i){

 $cap=$images[$i]['caption'];

 if(strlen($cap)>$vars['image_gallery_captionlength'])

www.eBookTM.Com

Chapter 9

[241]

 $cap=substr($cap,0,$vars['image_gallery_captionlength']-3)

 .'...';

 $all[]=array(

 'url'=>'/kfmget/'.$images[$i]['id'],

 'thumb'=>'/kfmget/'.$images[$i]['id'].',width='

 .$vars['image_gallery_thumbsize'].',height='

 .$vars['image_gallery_thumbsize'],

 'title'=>$images[$i]['caption'],

 'caption'=>str_replace('\\\\n',"
",

 htmlspecialchars($cap))

);

}

Next, we build up an array of the visible images, including details such as caption,
link to original image, address of thumbnail, and so on.

for($row=0;$row<$vars['image_gallery_y'];++$row){

 $c.='<tr>';

 for($col=0;$col<$vars['image_gallery_x'];++$col){

 $i=$row*$vars['image_gallery_x']+$col;

 $c.='<td id="igCell_'.$row.'_'.$col.'">';

 if(isset($all[$i]))$c.='<div style="text-align:center" '

 .'class="gallery_image"><a href="'.$all[$i]['url']

 .'">'

 .'<br style="clear:both" />'

 .$all[$i]['caption'].'</div>';

 $c.='</td>';

 }

 $c.='</tr>';

}

$c.='</table>';

Finally, we generate the table of images.

This can be enhanced by generating jQuery to manage the pagination but as this is
just a demonstration of having two gallery methods for the one CMS plugin, it's not
necessary to go through that trouble.

In the admin area, go to the Settings tab and change the gallery type to simple
gallery and click Update to save it.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Image Gallery Plugin

[242]

Now, when viewed in a browser, the page looks like this:

And when the next --> link is clicked, it changes to this:

www.eBookTM.Com

Chapter 9

[243]

Notice that the URL has been changed to add a start parameter and the pagination
has changed. There is no next --> and a <-- prev link is added.

Also, the bottom photo on the left-hand side has a caption on it.

That's it—a completed Image Gallery plugin.

Summary
In this chapter, we created an Image Gallery plugin for the CMS, which lets you
upload multiple images to a directory and choose from a list of gallery types how
you want to show the images on the front-end.

In the next chapter, we will build the basics of the Panels plugin. A Panel is basically
a "wrapper", within which widgets can be placed by the admin. It greatly extends the
customizability of a site design.

www.eBookTM.Com

